Skip to main content

CFD Training, Computational Fluid Dynamics : Tonex Training


CFD training, Computational Fluid Dynamics is a method based on a quick and consistent computational method to solve complicated fluid flow and heat transfer problems.
CFD allows the product design personnel to decrease the risks of potential design failures, improve their engineering design, and thus deliver them with the false competitive benefits in the marketplace.

Learn About:

CFD Fundamentals, principles, and Modeling
CFD requirements
Boundary Conditions
Physical properties of materials
The required user input
Turbulence modeling
Solution control parameters
Discretization schemes
Solution-adaptive mesh refinement
Streamwise  periodic flows
Compressible Fluid Flow considerations
Heat transfer and radiation modeling
Non-Conformal meshes
Modeling flows with rotating reference frames

TONEX CFD Training Format:

This course is a combination of theoretical and practical training on CFD. You will learn the concepts, methods, and formulas via lectures, while you will exercise what you have been taught through labs, group activities, and hands-on workshops.

Audience:

CFD training is a 3-day course designed for engineers, scientists, designers and managers who are keen to learn about this technique and some of its broad range of applications.

Training Objectives:
Upon the completion of CFD training, attendees are able to:

Establish the best CFD model (in regards to boundary conditions, material properties, solution control parameters, solution monitor, etc.) for the targeted problem
Develop the most suitable turbulence model for their specific applications
Articulate how to execute both Steady state & Transient (time dependent) fluid flow simulations
Describe how to solve for both isothermal and non isothermal thermo fluid purposes, by involving all the required modes of heat transfer i.e. conduction, convection and radiation.
Solve for both Incompressible and Compressible fluid flow purposes
Solve for fluid flow across porous media and rotating machinery
Obtain the necessary results & plots from wealth of knowledge accessible at the solution stage
Display a critical understanding of the principal equations of fluid mechanics and heat transfer
Measure the effect of various physical phenomena based on dimensional assessment
Comprehend mathematical components of governing equations
Evaluate accurate boundary/initial value problems for different flows
Establish the methodical application of the model equations and problems used in CFD
Validate a critical understanding of the notions of stability and turbulence

Course Outline:

Fundamentals of CFD
Numerical Methods
Steady and Unsteady Incompressible Flows Numerical Modeling
Steady and Unsteady Compressible Flows Numerical Modeling
Conventional Turbulence Modeling
CFD High Performance Computing
Validation and Verification of the Uncertainty Simulations
Data Analysis, Data Fusion and Post Processing
Importance of Experimental Data in CFD
TONEX Case Study Sample: CFD for Aerospace Applications

This CFD training delivers an introduction to the scientific rules and practical engineering usages of CFD. It offers the basic mathematical equations controlling the fluid flow and heat transfer phenomena, as well as practical applications of these theories.

Request more information . Visit Tonex.com for more information.

CFD training, computational fluid dynamics

Comments

Popular posts from this blog

Mobile Broadband Transformation Training Bootcamp | 3GPP 5G Training - Tonex Training

Length: 4 Days Mobile Broadband Transformation Training Bootcamp covers 3GPP technologies and strategies for LTE TO 5G mobile broadband advancement. Learn about 3GPP technology upgrades and extension of the LTE stage supporting cutting edge cellular technology and mobile broadband transformation, ITU's 5G norms (IMT2020). Find out about 3GPP upgrades and enablers supporting 5G administrations and RAN, transport and center networks. Watch mobile broadband transformation training video Learning Objective : Upon completing Mobile Broadband Transformation Training Bootcamp, the attendees will have the option to: Rundown Mobile Broadband transformation and LTE/LTE-Advanced and development to Illustrate Next Generation LTE, LTE-Advanced, LTE-Advanced Pro and 5G System Architecture Show the engineering of 5G RAN, transport and center networks Rundown the key 3GPP technology upgrades and empowering influences towards 5G Depict the advantages of Proximity Servic...

Requirements Engineering Workshop with Use Cases

Requirements Engineering Workshop with Use Cases, – Model-Based Requirements Engineering with Use Case. Requirements Engineering Workshop with Use Cases, Use Cases portray conceivable communications including a framework and its condition. Use Cases are considered as awesome instruments and powerful means for operational and practical requirements elicitation and investigation.

NB-IoT and LTE-M Crash Course Training

LTE-M and NB-IoT Crash Course Training: The Internet of Things (IoT), refers to physical devices that are now connected to the internet and often to each other, collecting and sharing data. By 2020, Cisco estimates that there will be 50 to 200 billion connected devices worldwide. LTE-M and NB-IoT Crash Course Training: Consequently, two new Low Power Wide Area (LPWA) technologies have been developed for IoT applications – NB-IoT (Narrowband-IoT) and LTE-M (Long Term Evolution For Machines). These are the important features to know about NB-IoT technologies: Low costs — The NB-IoT modules have lower costs than the modules for other communication technologies in the market (like, 3G, 4G, GPRS) and also LTE-M. This cost is, currently, around $10, and is expected to be between $5 and $7 eventually. From a user point of view, it is important to underline that the subscription cost will be cheaper than current M2M communications. More cellular per cell — NB-IoT devices uses 180 KHz bandwi...